If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+90x-73.6=0
a = 30; b = 90; c = -73.6;
Δ = b2-4ac
Δ = 902-4·30·(-73.6)
Δ = 16932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16932}=\sqrt{4*4233}=\sqrt{4}*\sqrt{4233}=2\sqrt{4233}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-2\sqrt{4233}}{2*30}=\frac{-90-2\sqrt{4233}}{60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+2\sqrt{4233}}{2*30}=\frac{-90+2\sqrt{4233}}{60} $
| 4(2x-1)=-3x+31 | | 0.05/x=60 | | 8(a+1)+2a=48+3a-5 | | 2x=µ5x | | 4x2(x+6)=36 | | -5x+29=10 | | 3w-2w-8/3=1/3 | | 2(w-4)/3=1/3 | | 2x+x+x/2=35 | | 3W-2(w-4)=1/3 | | 34=w–12 | | 10x+15-3x+6=0 | | 1.23h=2706 | | 2(15/4)-6+15/4=6(15/4)+p | | 7+3y=-1.4 | | -3(x+8)=2(2x)+20 | | 4x-1+5x=11+2x+3x | | 3.14x²-(x-x)=100 | | 3-b=7(-3/2)-9 | | 19-11/4x=8 | | 3-b=7(3/2)-9 | | 1.3(x+5)=2 | | 3(-4x)=(-6x+9) | | 10w-5=5(2w-1) | | -2(2x-1)=(-3x)+4 | | -1.2x=-0.48 | | 6x=24.5 | | .66x+x=22 | | 4.2x=24.5+2.8x | | x=−(3)±√(3)2−4(10)(2)2(10) | | 3x2=2x+12 | | 5/2x+1/2x=2x+6/2+5/2x |